
Curve Construction with Hermite Spline Interpolation 
 
 
In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is 
a spline where each piece is a third-degree polynomial specified in Hermite form: that is, 
by its values and first derivatives at the end points of the corresponding domain interval. 
Hermite curves are very easy to calculate but also very powerful. 
 

Bootstrap 
 
From a bootstrap from instruments defined on the tenor[ ]N0 T,T0 = , we get the average 

instantaneous forward rates on the intervals [ ]1ii T,T +  
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Interpolation 
 
We define the four Hermite functions as three order polynomials having the following 
properties: 
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We have: 
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Let ( ) ( )∫=
t

0

duuftI  

We can express the value of I, as well as its first order derivative, on the tenor. 
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Inside each interval[ ]1ii T,T + , we use the Hermite spline interpolation: 
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A better interpolation 
 
The way we choose ( )iT'I  is somewhat arbitrary. 

( ) ( ) ( ) ( ) ( ) 1NN
1i1i

1iiii1i1i

ii fT'I
TT

TTfTTf
TfT'I −

−+

−+− =
−

−+−==  

 

 

Curve properties 
 
By construction, the instantaneous forward rates are continuous. 

 

Reference 
 
http://www.cubic.org/~submissive/sourcerer/hermite.htm 
 
 

  
 


