Curve Construction with Hermite Spline Interpolation

In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline where each piece is a third-degree polynomial specified in Hermite form: that is, by its values and first derivatives at the end points of the corresponding domain interval. Hermite curves are very easy to calculate but also very powerful.

Bootstrap

From a bootstrap from instruments defined on the tenor $\left[0=T_{0}, T_{N}\right]$, we get the average instantaneous forward rates on the intervals $\left[\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}\right]$
$\bar{f}_{i}=\frac{\int_{T_{i}}^{T_{i+1}} f(u) d u}{T_{i+1}-T_{i}}$

Interpolation

We define the four Hermite functions as three order polynomials having the following properties:

$$
\begin{array}{llll}
\mathrm{H}_{1}(0)=1 & \mathrm{H}_{1}(1)=0 & \mathrm{H}_{1}{ }^{\prime}(0)=0 & \mathrm{H}_{1}{ }^{\prime}(0)=0 \\
\mathrm{H}_{2}(0)=0 & \mathrm{H}_{2}(1)=1 & \mathrm{H}_{2}{ }^{\prime}(0)=0 & \mathrm{H}_{2}{ }^{\prime}(0)=0 \\
\mathrm{H}_{3}(0)=0 & \mathrm{H}_{3}(1)=0 & \mathrm{H}_{3}{ }^{\prime}(0)=1 & \mathrm{H}_{3}{ }^{\prime}(0)=0 \\
\mathrm{H}_{4}(0)=0 & \mathrm{H}_{4}(1)=0 & \mathrm{H}_{4}{ }^{\prime}(0)=0 & \mathrm{H}_{4}{ }^{\prime}(0)=1
\end{array}
$$

We have:

$$
\begin{aligned}
& \mathrm{H}_{1}(\mathrm{u})=2 \mathrm{u}^{3}-3 \mathrm{u}^{2}+1 \\
& \mathrm{H}_{2}(\mathrm{u})=-2 \mathrm{u}^{3}+3 \mathrm{u}^{2} \\
& \mathrm{H}_{3}(\mathrm{u})=\mathrm{u}^{3}-2 \mathrm{u}^{2}+\mathrm{u} \\
& \mathrm{H}_{4}(\mathrm{u})=\mathrm{u}^{3}-\mathrm{u}^{2}
\end{aligned}
$$

Let $I(t)=\int_{0}^{t} f(u) d u$
We can express the value of I , as well as its first order derivative, on the tenor.
$I\left(T_{i}\right)=\sum_{j=0}^{i-1} \bar{f}_{j}\left(T_{j+1}-T_{j}\right)$
$I^{\prime}\left(T_{i}\right)=f\left(T_{i}\right)=\frac{\bar{f}_{i-1}\left(T_{i+1}-T_{i}\right)+\bar{f}_{i}\left(T_{i}-T_{i-1}\right)}{T_{i+1}-T_{i-1}} \quad I^{\prime}\left(T_{N}\right)=\bar{f}_{N-1}$
Inside each interval $\left[\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}+1}\right]$, we use the Hermite spline interpolation:
$\mathrm{I}(\mathrm{t})=\mathrm{I}\left(\mathrm{T}_{\mathrm{i}}\right) \mathrm{H}_{1}(\mathrm{~s})+\mathrm{I}\left(\mathrm{T}_{\mathrm{i}+1}\right) \mathrm{H}_{2}(\mathrm{~s})+\mathrm{I}^{\prime}\left(\mathrm{T}_{\mathrm{i}}\right)\left(\mathrm{T}_{\mathrm{i}+1}-\mathrm{T}_{\mathrm{i}}\right) \mathrm{H}_{3}(\mathrm{~s})+\mathrm{I}^{\prime}\left(\mathrm{T}_{\mathrm{i}+1}\right)\left(\mathrm{T}_{\mathrm{i}+1}-\mathrm{T}_{\mathrm{i}}\right) \mathrm{H}_{4}(\mathrm{~s})$
$\mathrm{s}=\frac{\mathrm{t}-\mathrm{T}_{\mathrm{i}}}{\mathrm{T}_{\mathrm{i}+1}-\mathrm{T}_{\mathrm{i}}}$

A better interpolation

The way we choose $I^{\prime}\left(T_{i}\right)$ is somewhat arbitrary.
$I^{\prime}\left(T_{i}\right)=f\left(T_{i}\right)=\frac{\bar{f}_{i-1}\left(T_{i+1}-T_{i}\right)+\bar{f}_{i}\left(T_{i}-T_{i-1}\right)}{T_{i+1}-T_{i-1}} \quad I^{\prime}\left(T_{N}\right)=\bar{f}_{N-1}$

Curve properties

By construction, the instantaneous forward rates are continuous.

Reference

http://www.cubic.org/~submissive/sourcerer/hermite.htm

